

ON THE SPECTRAL MOMENT OF BICYCLIC GRAPHS WITH GIVEN BASES

Yaping Wu

Received July 1, 2013

Abstract

A connected graph G of order n is called a bicyclic graph if the number of edges of Gis n+1. The base of G, denoted by \hat{G} , is the (unique) minimal bicyclic subgraph of G. Define $\mathscr{B}_n(G_0) = \{G : G \text{ is a bicyclic graph of order } n \text{ and } \hat{G} = G_0\}$. Let A(G)be the adjacency matrix of a graph G, and let $\lambda_1(G), \lambda_2(G), ..., \lambda_n(G)$ be the eigenvalues in non-increasing A(G). The order of number $\sum_{i=1}^{n} \lambda_i^k(G)(k=0, 1, ..., n-1)$ is called the *k*th spectral moment of *G*, denoted by $S_k(G)$. Let $S(G) = (S_0(G), S_1(G), ..., S_{n-1}(G))$ be the sequence of spectral moments of G. For two graphs G_1 , G_2 , we have $G_1 \prec_S G_2$ if for some $k \ (k = 1, 2, ..., n - 1)$, we have $S_i \ (G_1) = S_i \ (G_2) \ (i = 0, 1, ..., k - 1)$ and $S_k(G_1) < S_k(G_2)$. In this paper, we give the last and the first graphs, in an S-order, of all bicyclic graphs in the set $\mathscr{B}_n(G_0)$.

Keywords and phrases: spectral moment, bicyclic graph, base.

ISSN: 2231-1831

Pioneer Journal of Algebra, Number Theory and its Applications

